Reference Data

Complete Assignment of the ¹³C NMR Spectra of Diazinyl-Substituted Ureas and Thioureas

G. HEINISCH, P. LUKAVSKY,* B. MATUSZCZAK and D. RAKOWITZ

Institute of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

The total assignment of the ¹³C NMR spectra of novel diazine derived ureas and thioureas is reported. ⊚ 1997 by John Wiley & Sons. Ltd.

Magn. Reson. Chem. **35**, 653–655 (1997) No. of Figures: 1 No. of Tables: 2 No. of References: 10

KEY WORDS NMR; 13C NMR; diazinylureas; diazinylthioureas

Received 24 January 1997; revised 18 March 1997; accepted 7 April 1997

INTRODUCTION

The pyridylurea and pyridylthiourea moieties represent essential substructures of a wide variety of bioactive compounds (e.g. analgesic, acetylcholinesterase inhibitory, anticonvulsant, anti-schemic activity). Considering the reported interesting antitumor activity of N-[2-(5-picolyl)]-N'-(2-methylphenyl)thiourea (5MTUoT) and the antiviral activity of N-[2-(2-pyridylethyl)]-N'-[2-(5-bromopyridyl)] thiourea (Trovirdine), we prepared compounds of type 1a-e, 2a-e

and 3a-e (Fig. 1) as potential diazine bioisosters. Syntheses and biological activities of compounds 1a-e, 2a-e and 3a-e will be published elsewhere.

Here we report the complete ¹³C NMR chemical shift assignment of these novel urea derivatives (1a-e) and thiourea derivatives (2a-e and 3a-e). Compounds 3a-e have been claimed in a patent, ⁸ but there are no reports on their syntheses and spectroscopic data.

RESULTS

The ¹³C NMR chemical shifts of **1a**–e and **2a**–e are given in Table 1 and for **3a**–e in Table 2. The ¹³C chemical shift assignments were made on the basis of chemical shift considerations combined with resonance multiplicities obtained from DEPT⁹ spectra and by application of heteronuclear correlation experiments (HETCOR¹⁰). Quaternary carbon atoms C2'/6' and C1' in residue R² (compounds **1a**–e and **2a**–e) could be easily distinguished owing to the ratio of their ¹³C signal intensities of 2:1.

EXPERIMENTAL

¹³C (50 MHz) NMR spectra were recorded on a Varian GEMINI 200 spectrometer in DMSO- d_6 solutions (40–60 mg ml $^{-1}$) in 5 mm probe tubes at 30 °C with spectral width 13 000 Hz, 64K data points and 2 s interpulse delay. The center of the solvent signal (DMSO- d_6) was used as an internal standard, which was related to TMS with δ 39.5 ppm (13 C). Resonance multiplicities for 13 C were established via the acquisition of DEPT 9 spectra. For DEPT sequence, the width of the 13 C 90° pulse was 11.7 μs and that of the 14 H 90° pulse was 13 μs. The 1/(2J) delay was set at 2.8 ms for an average direct CH coupling constant of 180 Hz.

The heteronuclear shift correlation spectra were obtained using the standard Varian HETCOR¹⁰ pulse sequence with an acquisition time

Table 1.	¹³ C NMR	chemical	shifts (δ, p	pm, relat	ive to TM	S) of com	pounds 1a	e and 2a	–е	
Compound	C-2	C-3	C-4	C-5	C-6	C-1′	C-2'/6'	C-3'/5'	C-4'	C=0/S
1a		156.2	116.9	128.6	147.0	134.4	135.2	127.7	126.3	152.3
1b	_	144.2	137.7	114.2	151.3	133.9	134.2	127.8	127.2	151.9
1c	158.2	_	158.1	114.8	158.1	134.9	135.0	127.7	126.2	151.9
1d	157.6	_	158.5	108.3	157.2	134.4	135.2	127.8	126.4	151.9
1e	149.8	135.2	_	137.4	141.3	134.6	135.3	127.8	126.4	151.9
2a	_	156.9	118.6	129.8	147.6	136.4	135.3	127.9	127.3	179.9
2bª	_	143.9	146.3	114.7	146.1	135.3	135.6	128.0	127.7	179.2
2c	157.7	_	158.3	115.8	158.3	136.8	135.4	127.8	127.2	179.6
2d	156.6	_	158.1	109.0	157.6	136.5	135.2	127.9	127.3	179.9
2e	149.6	136.2	_	137.6	139.5	136.6	135.4	127.8	127.2	179.8
^a Compound 2b represents a hydrochloride.										

Table 2. ¹³ C NMR chemical shifts (δ, ppm, relative to TMS) of compounds 3a–e													
Compound	C-2	C-3	C-4	C-5	C-6	N-CH ₂	CH ₂	C-2'	C-3'	C-4'	C-5′	C-6′	c=s
3a	_	156.6	118.1	129.3	147.2	44.2	35.9	158.7	123.2	136.5	121.5	149.1	179.3
3 b		144.6	139.4	114.0	150.4	43.3	35.7	158.6	123.3	136.7	121.6	148.9	180.0
3c	157.4	_	157.9	115.5	157.9	44.2	35.8	158.8	123.4	136.5	121.6	149.1	179.2
3d	156.2	_	158.0	108.7	157.3	44.2	35.7	158.7	123.4	136.6	121.6	149.1	179.5
3е	149.6	136.1	_	137.5	139.5	44.3	36.0	159.0	123.7	137.0	122.0	149.3	179.5

^{*} Correspondence to: P. Lukavsky.

Reference Data

$$R^{1}_{N}$$
 R^{2}_{N} R^{2}

	5 MTUoT	2a	2 b	2c	2d	2e
R ¹	H ₃ C 5 4 3	6 N N 3	N 5 5 3	5 N 2	N 5 5 2 N 4	5 N 3
R ²	H ₃ C 2 3 4 5	H ₃ C 2' 4' 5' CH ₃	H ₃ C 2 4 5 CH ₃	H ₃ C 2 5 5 CH ₃	H ₃ C 2 5 5 CH ₃	H ₃ C 2 4 5 5 CH ₃

	Trovirdine	3a	3b	3c	3d	3e
R ¹	Br 5 4 3	6 A A	6 5 N 3	5 N 2	N 5 5	5 N 3
R ²	2 N 5	N 5	N 5	N 5	N 5	N 5

Figure 1. Structures of the compounds studied.

Reference Data

of 0.078 s, an average $^{1}J_{\mathrm{CH}}$ of 180 Hz, 256 increments with 32 transients per increment, a delay of 1.5 s between transients and data processed as a 2048 \times 512 matrix using sine-bell functions for weighting and zero-filling in both domains. Spectral widths of 2 and 7 kHz were employed in the F_{1} (1 H) and F_{2} (13 C) dimensions, respectively.

References

- Y. Ohkubo, K. Nomura and I. Yamaguchi, Eur. J. Pharmacol. 204, 121 (1990).
- J.-L. Vidaluc, F. Calmel, D. Bigg, E. Carilla, A. Stenger, P. Chopin and M. Briley, J. Med. Chem. 37, 689, (1994).
- 3. M. R. Pavia, S. J. Lobbestael, C. P. Taylor, F. M. Hershenson and D. L. Miskell, *J. Med. Chem.* 33, 854 (1990).
- T. Takemoto, M. Eda, T. Okada, H. Sakashita, S. Matzno, M. Gohda, H. Ebisu, N. Nakamura, C. Fukaya, M. Hihara, M.

- Eiraku, K. Yamanouchi and K. Yokoyama, *J. Med. Chem.* **37**, 18 (1994).
- I. H. Hall, K. G. Rajendran, D. X. West and A. E. Liberta, Anti-Cancer Drugs 4, 231 (1993).
- F. B. Bell, A. S. Cantrell, M. Högberg, S. R. Jaskunas, N. G. Johansson, C. L. Jordan, M. D. Kinnick, P. Lind, J. M., Morin Jr., R. Noreen, B. Öberg, J. A. Palkowitz, C. A. Parrish, P. Pranc, C. Sahlberg, R. J. Ternansky, R. T. Vasileff, L. Vrang, S. J. West, H. Zhang and X.-X. Zhou, J. Med. Chem. 38, 4929 (1995).
- 7. D. Rakowitz, PhD Thesis, University of Innsbruck (1996).
- P. Lind, J. M. Morin, Jr. R. Noreen and R. J. Ternansky, PCT Int. Appl. WO 93 03 022 (1993); Chem. Abstr. 119, 160110q (1993).
- D. M. Doddrell, D. T. Pegg and M. R. Bendall, J. Magn. Reson. 48, 323 (1982).
- (a) A. Bax and G. A. Morris, J. Magn. Reson. 42, 501 (1981);
 (b) A. Bax, J. Magn. Reson. 53, 512 (1983).